In-class Exercise 8: Building hedonic pricing model with gwr

Author

Harith Oh Yee Choon

Published

March 6, 2023

Modified

March 13, 2023

pacman::p_load(olsrr, corrplot, ggpubr, sf, spdep, GWmodel, tmap, tidyverse, gtsummary, readr)

13.5 Geospatial Data Wrangling 13.5.1 Importing geospatial data The geospatial data used in this hands-on exercise is called MP14_SUBZONE_WEB_PL. It is in ESRI shapefile format. The shapefile consists of URA Master Plan 2014’s planning subzone boundaries. Polygon features are used to represent these geographic boundaries. The GIS data is in svy21 projected coordinates systems.

The code chunk below is used to import MP_SUBZONE_WEB_PL shapefile by using st_read() of sf packages.

mpsz = st_read(dsn = "data/Geospatial", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `C:\Harith-oh\IS415-Harith\In-class_Ex\data\Geospatial' using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21

Reading layer MP14_SUBZONE_WEB_PL' from data sourceD:gdsa’ using driver `ESRI Shapefile’ Simple feature collection with 323 features and 15 fields Geometry type: MULTIPOLYGON Dimension: XY Bounding box: xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33 Projected CRS: SVY21 The report above shows that the R object used to contain the imported MP14_SUBZONE_WEB_PL shapefile is called mpsz and it is a simple feature object. The geometry type is multipolygon. it is also important to note that mpsz simple feature object does not have EPSG information.

13.5.2 Updating CRS information The code chunk below updates the newly imported mpsz with the correct ESPG code (i.e. 3414)

mpsz_svy21 <- st_transform(mpsz, 3414)

After transforming the projection metadata, you can varify the projection of the newly transformed mpsz_svy21 by using st_crs() of sf package.

The code chunk below will be used to varify the newly transformed mpsz_svy21.

st_crs(mpsz_svy21)
Coordinate Reference System:
  User input: EPSG:3414 
  wkt:
PROJCRS["SVY21 / Singapore TM",
    BASEGEOGCRS["SVY21",
        DATUM["SVY21",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["degree",0.0174532925199433]],
        ID["EPSG",4757]],
    CONVERSION["Singapore Transverse Mercator",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["northing (N)",north,
            ORDER[1],
            LENGTHUNIT["metre",1]],
        AXIS["easting (E)",east,
            ORDER[2],
            LENGTHUNIT["metre",1]],
    USAGE[
        SCOPE["Cadastre, engineering survey, topographic mapping."],
        AREA["Singapore - onshore and offshore."],
        BBOX[1.13,103.59,1.47,104.07]],
    ID["EPSG",3414]]

Coordinate Reference System: User input: EPSG:3414 wkt: PROJCRS[“SVY21 / Singapore TM”, BASEGEOGCRS[“SVY21”, DATUM[“SVY21”, ELLIPSOID[“WGS 84”,6378137,298.257223563, LENGTHUNIT[“metre”,1]]], PRIMEM[“Greenwich”,0, ANGLEUNIT[“degree”,0.0174532925199433]], ID[“EPSG”,4757]], CONVERSION[“Singapore Transverse Mercator”, METHOD[“Transverse Mercator”, ID[“EPSG”,9807]], PARAMETER[“Latitude of natural origin”,1.36666666666667, ANGLEUNIT[“degree”,0.0174532925199433], ID[“EPSG”,8801]], PARAMETER[“Longitude of natural origin”,103.833333333333, ANGLEUNIT[“degree”,0.0174532925199433], ID[“EPSG”,8802]], PARAMETER[“Scale factor at natural origin”,1, SCALEUNIT[“unity”,1], ID[“EPSG”,8805]], PARAMETER[“False easting”,28001.642, LENGTHUNIT[“metre”,1], ID[“EPSG”,8806]], PARAMETER[“False northing”,38744.572, LENGTHUNIT[“metre”,1], ID[“EPSG”,8807]]], CS[Cartesian,2], AXIS[“northing (N)”,north, ORDER[1], LENGTHUNIT[“metre”,1]], AXIS[“easting (E)”,east, ORDER[2], LENGTHUNIT[“metre”,1]], USAGE[ SCOPE[“Cadastre, engineering survey, topographic mapping.”], AREA[“Singapore - onshore and offshore.”], BBOX[1.13,103.59,1.47,104.07]], ID[“EPSG”,3414]] Notice that the EPSG: is indicated as 3414 now.

Next, you will reveal the extent of mpsz_svy21 by using st_bbox() of sf package.

st_bbox(mpsz_svy21) #view extent
     xmin      ymin      xmax      ymax 
 2667.538 15748.721 56396.440 50256.334 
 xmin      ymin      xmax      ymax 

2667.538 15748.721 56396.440 50256.334

13.6 Aspatial Data Wrangling 13.6.1 Importing the aspatial data The condo_resale_2015 is in csv file format. The codes chunk below uses read_csv() function of readr package to import condo_resale_2015 into R as a tibble data frame called condo_resale.

condo_resale = read_csv("data/Aspatial/Condo_resale_2015.csv")

After importing the data file into R, it is important for us to examine if the data file has been imported correctly.

The codes chunks below uses glimpse() to display the data structure of will do the job.

glimpse(condo_resale)
Rows: 1,436
Columns: 23
$ LATITUDE             <dbl> 1.287145, 1.328698, 1.313727, 1.308563, 1.321437,…
$ LONGITUDE            <dbl> 103.7802, 103.8123, 103.7971, 103.8247, 103.9505,…
$ POSTCODE             <dbl> 118635, 288420, 267833, 258380, 467169, 466472, 3…
$ SELLING_PRICE        <dbl> 3000000, 3880000, 3325000, 4250000, 1400000, 1320…
$ AREA_SQM             <dbl> 309, 290, 248, 127, 145, 139, 218, 141, 165, 168,…
$ AGE                  <dbl> 30, 32, 33, 7, 28, 22, 24, 24, 27, 31, 17, 22, 6,…
$ PROX_CBD             <dbl> 7.941259, 6.609797, 6.898000, 4.038861, 11.783402…
$ PROX_CHILDCARE       <dbl> 0.16597932, 0.28027246, 0.42922669, 0.39473543, 0…
$ PROX_ELDERLYCARE     <dbl> 2.5198118, 1.9333338, 0.5021395, 1.9910316, 1.121…
$ PROX_URA_GROWTH_AREA <dbl> 6.618741, 7.505109, 6.463887, 4.906512, 6.410632,…
$ PROX_HAWKER_MARKET   <dbl> 1.76542207, 0.54507614, 0.37789301, 1.68259969, 0…
$ PROX_KINDERGARTEN    <dbl> 0.05835552, 0.61592412, 0.14120309, 0.38200076, 0…
$ PROX_MRT             <dbl> 0.5607188, 0.6584461, 0.3053433, 0.6910183, 0.528…
$ PROX_PARK            <dbl> 1.1710446, 0.1992269, 0.2779886, 0.9832843, 0.116…
$ PROX_PRIMARY_SCH     <dbl> 1.6340256, 0.9747834, 1.4715016, 1.4546324, 0.709…
$ PROX_TOP_PRIMARY_SCH <dbl> 3.3273195, 0.9747834, 1.4715016, 2.3006394, 0.709…
$ PROX_SHOPPING_MALL   <dbl> 2.2102717, 2.9374279, 1.2256850, 0.3525671, 1.307…
$ PROX_SUPERMARKET     <dbl> 0.9103958, 0.5900617, 0.4135583, 0.4162219, 0.581…
$ PROX_BUS_STOP        <dbl> 0.10336166, 0.28673408, 0.28504777, 0.29872340, 0…
$ NO_Of_UNITS          <dbl> 18, 20, 27, 30, 30, 31, 32, 32, 32, 32, 34, 34, 3…
$ FAMILY_FRIENDLY      <dbl> 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0…
$ FREEHOLD             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1…
$ LEASEHOLD_99YR       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
head(condo_resale$LONGITUDE) #see the data in XCOORD column
[1] 103.7802 103.8123 103.7971 103.8247 103.9505 103.9386
head(condo_resale$LATITUDE) #see the data in YCOORD column
[1] 1.287145 1.328698 1.313727 1.308563 1.321437 1.314198

[1] 1.287145 1.328698 1.313727 1.308563 1.321437 1.314198 Next, summary() of base R is used to display the summary statistics of cond_resale tibble data frame.

summary(condo_resale)
    LATITUDE       LONGITUDE        POSTCODE      SELLING_PRICE     
 Min.   :1.240   Min.   :103.7   Min.   : 18965   Min.   :  540000  
 1st Qu.:1.309   1st Qu.:103.8   1st Qu.:259849   1st Qu.: 1100000  
 Median :1.328   Median :103.8   Median :469298   Median : 1383222  
 Mean   :1.334   Mean   :103.8   Mean   :440439   Mean   : 1751211  
 3rd Qu.:1.357   3rd Qu.:103.9   3rd Qu.:589486   3rd Qu.: 1950000  
 Max.   :1.454   Max.   :104.0   Max.   :828833   Max.   :18000000  
    AREA_SQM          AGE           PROX_CBD       PROX_CHILDCARE    
 Min.   : 34.0   Min.   : 0.00   Min.   : 0.3869   Min.   :0.004927  
 1st Qu.:103.0   1st Qu.: 5.00   1st Qu.: 5.5574   1st Qu.:0.174481  
 Median :121.0   Median :11.00   Median : 9.3567   Median :0.258135  
 Mean   :136.5   Mean   :12.14   Mean   : 9.3254   Mean   :0.326313  
 3rd Qu.:156.0   3rd Qu.:18.00   3rd Qu.:12.6661   3rd Qu.:0.368293  
 Max.   :619.0   Max.   :37.00   Max.   :19.1804   Max.   :3.465726  
 PROX_ELDERLYCARE  PROX_URA_GROWTH_AREA PROX_HAWKER_MARKET PROX_KINDERGARTEN 
 Min.   :0.05451   Min.   :0.2145       Min.   :0.05182    Min.   :0.004927  
 1st Qu.:0.61254   1st Qu.:3.1643       1st Qu.:0.55245    1st Qu.:0.276345  
 Median :0.94179   Median :4.6186       Median :0.90842    Median :0.413385  
 Mean   :1.05351   Mean   :4.5981       Mean   :1.27987    Mean   :0.458903  
 3rd Qu.:1.35122   3rd Qu.:5.7550       3rd Qu.:1.68578    3rd Qu.:0.578474  
 Max.   :3.94916   Max.   :9.1554       Max.   :5.37435    Max.   :2.229045  
    PROX_MRT         PROX_PARK       PROX_PRIMARY_SCH  PROX_TOP_PRIMARY_SCH
 Min.   :0.05278   Min.   :0.02906   Min.   :0.07711   Min.   :0.07711     
 1st Qu.:0.34646   1st Qu.:0.26211   1st Qu.:0.44024   1st Qu.:1.34451     
 Median :0.57430   Median :0.39926   Median :0.63505   Median :1.88213     
 Mean   :0.67316   Mean   :0.49802   Mean   :0.75471   Mean   :2.27347     
 3rd Qu.:0.84844   3rd Qu.:0.65592   3rd Qu.:0.95104   3rd Qu.:2.90954     
 Max.   :3.48037   Max.   :2.16105   Max.   :3.92899   Max.   :6.74819     
 PROX_SHOPPING_MALL PROX_SUPERMARKET PROX_BUS_STOP       NO_Of_UNITS    
 Min.   :0.0000     Min.   :0.0000   Min.   :0.001595   Min.   :  18.0  
 1st Qu.:0.5258     1st Qu.:0.3695   1st Qu.:0.098356   1st Qu.: 188.8  
 Median :0.9357     Median :0.5687   Median :0.151710   Median : 360.0  
 Mean   :1.0455     Mean   :0.6141   Mean   :0.193974   Mean   : 409.2  
 3rd Qu.:1.3994     3rd Qu.:0.7862   3rd Qu.:0.220466   3rd Qu.: 590.0  
 Max.   :3.4774     Max.   :2.2441   Max.   :2.476639   Max.   :1703.0  
 FAMILY_FRIENDLY     FREEHOLD      LEASEHOLD_99YR  
 Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
 Median :0.0000   Median :0.0000   Median :0.0000  
 Mean   :0.4868   Mean   :0.4227   Mean   :0.4882  
 3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
 Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  

13.6.2 Converting aspatial data frame into a sf object Currently, the condo_resale tibble data frame is aspatial. We will convert it to a sf object. The code chunk below converts condo_resale data frame into a simple feature data frame by using st_as_sf() of sf packages.

condo_resale.sf <- st_as_sf(condo_resale,
                            coords = c("LONGITUDE", "LATITUDE"),
                            crs=4326) %>%
  st_transform(crs=3414)

Notice that st_transform() of sf package is used to convert the coordinates from wgs84 (i.e. crs:4326) to svy21 (i.e. crs=3414).

Next, head() is used to list the content of condo_resale.sf object.

head(condo_resale.sf)
Simple feature collection with 6 features and 21 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 22085.12 ymin: 29951.54 xmax: 41042.56 ymax: 34546.2
Projected CRS: SVY21 / Singapore TM
# A tibble: 6 × 22
  POSTCODE SELLI…¹ AREA_…²   AGE PROX_…³ PROX_…⁴ PROX_…⁵ PROX_…⁶ PROX_…⁷ PROX_…⁸
     <dbl>   <dbl>   <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
1   118635 3000000     309    30    7.94   0.166   2.52     6.62   1.77   0.0584
2   288420 3880000     290    32    6.61   0.280   1.93     7.51   0.545  0.616 
3   267833 3325000     248    33    6.90   0.429   0.502    6.46   0.378  0.141 
4   258380 4250000     127     7    4.04   0.395   1.99     4.91   1.68   0.382 
5   467169 1400000     145    28   11.8    0.119   1.12     6.41   0.565  0.461 
6   466472 1320000     139    22   10.3    0.125   0.789    5.09   0.781  0.0994
# … with 12 more variables: PROX_MRT <dbl>, PROX_PARK <dbl>,
#   PROX_PRIMARY_SCH <dbl>, PROX_TOP_PRIMARY_SCH <dbl>,
#   PROX_SHOPPING_MALL <dbl>, PROX_SUPERMARKET <dbl>, PROX_BUS_STOP <dbl>,
#   NO_Of_UNITS <dbl>, FAMILY_FRIENDLY <dbl>, FREEHOLD <dbl>,
#   LEASEHOLD_99YR <dbl>, geometry <POINT [m]>, and abbreviated variable names
#   ¹​SELLING_PRICE, ²​AREA_SQM, ³​PROX_CBD, ⁴​PROX_CHILDCARE, ⁵​PROX_ELDERLYCARE,
#   ⁶​PROX_URA_GROWTH_AREA, ⁷​PROX_HAWKER_MARKET, ⁸​PROX_KINDERGARTEN

Notice that the output is in point feature data frame.

corrplot::corrplot(cor(condo_resale[, 5:23]), diag = FALSE, order = "AOE",
         tl.pos = "td", tl.cex = 0.5, method = "number", type = "upper")

13.7 Exploratory Data Analysis (EDA) In the section, you will learn how to use statistical graphics functions of ggplot2 package to perform EDA.

13.7.1 EDA using statistical graphics We can plot the distribution of SELLING_PRICE by using appropriate Exploratory Data Analysis (EDA) as shown in the code chunk below.

ggplot(data=condo_resale.sf, aes(x=`SELLING_PRICE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

13.7.2 Multiple Histogram Plots distribution of variables In this section, you will learn how to draw a small multiple histograms (also known as trellis plot) by using ggarrange() of ggpubr package.

The code chunk below is used to create 12 histograms. Then, ggarrange() is used to organised these histogram into a 3 columns by 4 rows small multiple plot.

AREA_SQM <- ggplot(data=condo_resale.sf, aes(x= `AREA_SQM`)) + 
  geom_histogram(bins=20, color="black", fill="light blue")

AGE <- ggplot(data=condo_resale.sf, aes(x= `AGE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_CBD <- ggplot(data=condo_resale.sf, aes(x= `PROX_CBD`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_CHILDCARE <- ggplot(data=condo_resale.sf, aes(x= `PROX_CHILDCARE`)) + 
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_ELDERLYCARE <- ggplot(data=condo_resale.sf, aes(x= `PROX_ELDERLYCARE`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_URA_GROWTH_AREA <- ggplot(data=condo_resale.sf, 
                               aes(x= `PROX_URA_GROWTH_AREA`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_HAWKER_MARKET <- ggplot(data=condo_resale.sf, aes(x= `PROX_HAWKER_MARKET`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_KINDERGARTEN <- ggplot(data=condo_resale.sf, aes(x= `PROX_KINDERGARTEN`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_MRT <- ggplot(data=condo_resale.sf, aes(x= `PROX_MRT`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_PARK <- ggplot(data=condo_resale.sf, aes(x= `PROX_PARK`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_PRIMARY_SCH <- ggplot(data=condo_resale.sf, aes(x= `PROX_PRIMARY_SCH`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

PROX_TOP_PRIMARY_SCH <- ggplot(data=condo_resale.sf, 
                               aes(x= `PROX_TOP_PRIMARY_SCH`)) +
  geom_histogram(bins=20, color="black", fill="light blue")

ggarrange(AREA_SQM, AGE, PROX_CBD, PROX_CHILDCARE, PROX_ELDERLYCARE, 
          PROX_URA_GROWTH_AREA, PROX_HAWKER_MARKET, PROX_KINDERGARTEN, PROX_MRT,
          PROX_PARK, PROX_PRIMARY_SCH, PROX_TOP_PRIMARY_SCH,  
          ncol = 3, nrow = 4)